
Regularized Nonlinear Acceleration

Damien Scieur, Alexandre d’Aspremont, Francis Bach



Acknowledgements

1



Introduction

Algorithms produce a sequence of iterates. We usually keep the

last/best one, or their mean.

x4

x2

x0

x3

x1

x
∗

Can we do better?
2



Idea of Extrapolation

1. Run a simple algorithm, e.g. gradient descent

2. “Guess” the solution using an extrapolation algorithm

3. Enjoy! ,

x4

x2

x0

x3

x1

x
∗

3



Idea of Extrapolation

1. Run a simple algorithm, e.g. gradient descent

2. “Guess” the solution using an extrapolation algorithm

3. Enjoy! ,

x4

x2

x0

x3

x1

x
∗

3



Idea of Extrapolation

1. Run a simple algorithm, e.g. gradient descent

2. “Guess” the solution using an extrapolation algorithm

3. Enjoy! ,

x4

x2

x0

x3

x1

x
∗

3



Extrapolation in Real Life

An infinite number of mathematicians walk into a bar...

The first one orders a beer,

the second one orders half a beer,

the third one orders a fourth of a beer, ...

The bartender stops them, pours two beers and says “You guys

should know your limits!” - Extrapolation step!

4



Extrapolation in Real Life

An infinite number of mathematicians walk into a bar...

The first one orders a beer,

the second one orders half a beer,

the third one orders a fourth of a beer, ...

The bartender stops them, pours two beers and says “You guys

should know your limits!” - Extrapolation step!

4



Extrapolation in Real Life

An infinite number of mathematicians walk into a bar...

The first one orders a beer,

the second one orders half a beer,

the third one orders a fourth of a beer, ...

The bartender stops them, pours two beers and says “You guys

should know your limits!” - Extrapolation step!

4



Extrapolation in Real Life

An infinite number of mathematicians walk into a bar...

The first one orders a beer,

the second one orders half a beer,

the third one orders a fourth of a beer, ...

The bartender stops them, pours two beers and says “You guys

should know your limits!” - Extrapolation step!

4



Example in One Dimension

An autoregressive process generates scalars xt , converging to x∗:

xt+1 = axt + b ⇔ (xt+1 − x∗) = α(xt − x∗)

Example: the “beer” series
{

1 ; 1 + 1
2 ; 1 + 1

2 + 1
4 ; . . .

}
2− xt+1 =

1

2
(2− xt) ⇒

α = 1/2

x∗ = 2

Like the bartender, we can estimate x∗ using only three iterates

5



Aitken’s ∆2 Formula

Three points {xt−1, xt , xt+1} from autoregressive process:

(xt+1 − x∗) = α(xt − x∗)

1) Estimate α: Take the difference between two successive xt ,

(xt+1 − x∗) = α(xt − x∗)

(xt − x∗) = α(xt−1 − x∗)

}
⇒ (xt+1 − xt) = α(xt − xt−1)

Simple estimation: αest = (xt+1−xt)
(xt−xt−1)

.

2) Extrapolate x∗:

(xt+1 − x∗) = αest(xt − x∗) ⇒ xextr =
xt+1 − αestxt

1− αest

Require only three iterates!

6



Aitken’s ∆2 Formula

Three points {xt−1, xt , xt+1} from autoregressive process:

(xt+1 − x∗) = α(xt − x∗)

1) Estimate α: Take the difference between two successive xt ,

(xt+1 − x∗) = α(xt − x∗)

(xt − x∗) = α(xt−1 − x∗)

}
⇒ (xt+1 − xt) = α(xt − xt−1)

Simple estimation: αest = (xt+1−xt)
(xt−xt−1)

.

2) Extrapolate x∗:

(xt+1 − x∗) = αest(xt − x∗) ⇒ xextr =
xt+1 − αestxt

1− αest

Require only three iterates!

6



Aitken’s ∆2 Formula

Three points {xt−1, xt , xt+1} from autoregressive process:

(xt+1 − x∗) = α(xt − x∗)

1) Estimate α: Take the difference between two successive xt ,

(xt+1 − x∗) = α(xt − x∗)

(xt − x∗) = α(xt−1 − x∗)

}
⇒ (xt+1 − xt) = α(xt − xt−1)

Simple estimation: αest = (xt+1−xt)
(xt−xt−1)

.

2) Extrapolate x∗:

(xt+1 − x∗) = αest(xt − x∗) ⇒ xextr =
xt+1 − αestxt

1− αest

Require only three iterates!

6



Examples

When applied to the beer series,{
1, 1 +

1

2
, 1 +

1

2
+

1

4
, . . .

}
,

recover exactly xextr = 2 = x∗ using only three iterates!

Performs well on other kind of sequences, e.g.

xt =
t∑

k=0

(−1)k

2k + 1
→ x∗ =

π

4
.

Without extrapolation: x9 − x∗ ≈ 0.03.

Using ∆2 formula on x7, x8, x9: xextr − x∗ ≈ 0.00001!

7



Examples

When applied to the beer series,{
1, 1 +

1

2
, 1 +

1

2
+

1

4
, . . .

}
,

recover exactly xextr = 2 = x∗ using only three iterates!

Performs well on other kind of sequences, e.g.

xt =
t∑

k=0

(−1)k

2k + 1
→ x∗ =

π

4
.

Without extrapolation: x9 − x∗ ≈ 0.03.

Using ∆2 formula on x7, x8, x9: xextr − x∗ ≈ 0.00001!

7



Extension to Rd

Scalar autoregressive process −→ Vector autoregressive process

(xt+1 − x∗) = α(xt − x∗) −→ (xt+1 − x∗) = A(xt − x∗)

We assume A symmetric.

Example: Gradient method with step size h,

(xt+1−x∗) = (xt−x∗)− h∇f (xt)

Linearizing ∇f (x) around x∗ gives

(xt+1 − x∗) =
(
I − h∇2f (x∗)

)︸ ︷︷ ︸
=A

(xt − x∗) + Perturbations

8



Extension to Rd

Scalar autoregressive process −→ Vector autoregressive process

(xt+1 − x∗) = α(xt − x∗) −→ (xt+1 − x∗) = A(xt − x∗)

We assume A symmetric.

Example: Gradient method with step size h,

(xt+1−x∗) = (xt−x∗)− h∇f (xt)

Linearizing ∇f (x) around x∗ gives

(xt+1 − x∗) =
(
I − h∇2f (x∗)

)︸ ︷︷ ︸
=A

(xt − x∗) + Perturbations

8



Outline

1. Extension of ∆2 formula in Rd? Anderson acceleration

2. Performances? Optimal on quadratics

3. Impact of perturbations? Huge → Regularization (our work)

4. Rate of convergence? Asymptotically optimal

9



Acceleration and Weighted Average

Vector autoregressive process with ‖A‖ = (1− κ) < 1,

(xt+1 − x∗) = A(xt − x∗) = At+1(x0 − x∗)

Error at iteration k :

‖xk − x∗‖ ≤ (1− κ)k‖x0 − x∗‖ (Slow)

We literally waste information contained in x0, ..., xk−1!

Proposition

There exists vector c ∈ Rk s.t.
∑k

i=0 ci = 1 and

‖
k∑

i=0

cixi − x∗‖ ≤ (1−
√
κ)k‖x0 − x∗‖ (Optimal)

Proof: There exist accelerated methods (e.g. Nesterov)

10



Acceleration and Weighted Average

Vector autoregressive process with ‖A‖ = (1− κ) < 1,

(xt+1 − x∗) = A(xt − x∗) = At+1(x0 − x∗)

Error at iteration k :

‖xk − x∗‖ ≤ (1− κ)k‖x0 − x∗‖ (Slow)

We literally waste information contained in x0, ..., xk−1!

Proposition

There exists vector c ∈ Rk s.t.
∑k

i=0 ci = 1 and

‖
k∑

i=0

cixi − x∗‖ ≤ (1−
√
κ)k‖x0 − x∗‖ (Optimal)

Proof: There exist accelerated methods (e.g. Nesterov)
10



Goal of extrapolation

Find the best coefficients c such that

‖
k∑

i=0

cixi − x∗‖ = ‖xextr − x∗‖

is as small as possible.

11



Approximation of Extrapolation Error

Goal: Approximate (then minimize) the extrapolation error

xextr − x∗ =
k∑

i=0

cixi − x∗ (unknown)

Definition: Residual at iteration i , ri , xi+1 − xi (known)

Proposition

The combination of residuals approximates the extrapolation error

k∑
i=0

ci ri = (A− I )(xextr − x∗)

Proof: xi+1 − xi = (xi+1 − x∗)− (xi − x∗)

= A(xi − x∗)− (xi − x∗) = (A− I )(xi − x∗)

12



Approximation of Extrapolation Error

Goal: Approximate (then minimize) the extrapolation error

xextr − x∗ =
k∑

i=0

cixi − x∗ (unknown)

Definition: Residual at iteration i , ri , xi+1 − xi (known)

Proposition

The combination of residuals approximates the extrapolation error

k∑
i=0

ci ri = (A− I )(xextr − x∗)

Proof: xi+1 − xi = (xi+1 − x∗)− (xi − x∗)

= A(xi − x∗)− (xi − x∗) = (A− I )(xi − x∗)

12



Approximation of Extrapolation Error

Goal: Approximate (then minimize) the extrapolation error

xextr − x∗ =
k∑

i=0

cixi − x∗ (unknown)

Definition: Residual at iteration i , ri , xi+1 − xi (known)

Proposition

The combination of residuals approximates the extrapolation error

k∑
i=0

ci ri = (A− I )(xextr − x∗)

Proof: xi+1 − xi = (xi+1 − x∗)− (xi − x∗)

= A(xi − x∗)− (xi − x∗) = (A− I )(xi − x∗)

12



Acceleration Algorithm (Anderson’s Acceleration)

1. Compute the residuals ri = xi+1 − xi , i = 1...k

2. Under the constraint
∑

ci = 1, solve

min
c
‖

k∑
i=0

ci ri‖ ≈ min
c
‖xextr − x∗‖

2’. Let R = [r0, r1, ..., rk ]. The closed-form formula is

c∗ =
(RTR)−11

1T (RTR)−11

3. Return

xextr =
∑k

i=0 c
∗
i xi ≈ x∗

13



Acceleration Algorithm (Anderson’s Acceleration)

1. Compute the residuals ri = xi+1 − xi , i = 1...k

2. Under the constraint
∑

ci = 1, solve

min
c
‖

k∑
i=0

ci ri‖ ≈ min
c
‖xextr − x∗‖

2’. Let R = [r0, r1, ..., rk ]. The closed-form formula is

c∗ =
(RTR)−11

1T (RTR)−11

3. Return

xextr =
∑k

i=0 c
∗
i xi ≈ x∗

13



Acceleration Algorithm (Anderson’s Acceleration)

1. Compute the residuals ri = xi+1 − xi , i = 1...k

2. Under the constraint
∑

ci = 1, solve

min
c
‖

k∑
i=0

ci ri‖ ≈ min
c
‖xextr − x∗‖

2’. Let R = [r0, r1, ..., rk ]. The closed-form formula is

c∗ =
(RTR)−11

1T (RTR)−11

3. Return

xextr =
∑k

i=0 c
∗
i xi ≈ x∗

13



Acceleration Algorithm (Anderson’s Acceleration)

1. Compute the residuals ri = xi+1 − xi , i = 1...k

2. Under the constraint
∑

ci = 1, solve

min
c
‖

k∑
i=0

ci ri‖ ≈ min
c
‖xextr − x∗‖

2’. Let R = [r0, r1, ..., rk ]. The closed-form formula is

c∗ =
(RTR)−11

1T (RTR)−11

3. Return

xextr =
∑k

i=0 c
∗
i xi ≈ x∗

13



Performances

Convergence rate for minimizing quadratics:

‖xextr − x∗‖ ≤ (1−
√
κ)k‖x0 − x∗‖ (Optimal)

0 100 200 300 400 500

10
0

10
1

10
2

10
3

Iteration

A
c
c
u
ra

c
y

 

 

Gradient method

Acceleration + Gradient

Does not work for minimizing nonlinear functions...

14



Performances

Convergence rate for minimizing quadratics:

‖xextr − x∗‖ ≤ (1−
√
κ)k‖x0 − x∗‖ (Optimal)

0 100 200 300 400 500

10
0

10
1

10
2

10
3

Iteration

A
c
c
u
ra

c
y

 

 

Gradient method

Acceleration + Gradient

Does not work for minimizing nonlinear functions...

14



Reminder

Gradient method with step size h,

(xt+1−x∗) = (xt−x∗)− h∇f (xt)

Linearizing ∇f (x) around x∗ gives

(xt+1 − x∗) = A(xt − x∗) + Perturbations

Anderson’s Acceleration is unstable! - why?

15



Impact of perturbations?

The computation of c∗ involves (RTR)−1

Proposition

If RTR is perturbed by a matrix P (e.g. Taylor remainder), then

Error on c∗ ≤ ‖(RTR)−1‖‖P‖‖c∗‖

Bad conditionning (Tyrtyshnikov, 1994)

Krylov matrix. ‖(RTR)−1‖ grows exponentially with k.

The error on c∗ is virtually unbounded.

16



Impact of perturbations?

The computation of c∗ involves (RTR)−1

Proposition

If RTR is perturbed by a matrix P (e.g. Taylor remainder), then

Error on c∗ ≤ ‖(RTR)−1‖‖P‖‖c∗‖

Bad conditionning (Tyrtyshnikov, 1994)

Krylov matrix. ‖(RTR)−1‖ grows exponentially with k.

The error on c∗ is virtually unbounded.

16



Regularized Nonlinear Acceleration (RNA)

Perturbations are controlled by Tikhonov Regularization

Input: Sequence {x0, ..., xk+1}, parameter λ > 0

1: Form R = [r0, ..., rk ], where ri = xi+1 − xi O(dk)

2: Compute RTR O(dk2)

3: Compute c∗ = (RTR+λI)−11

1T (RTR+λI)−11
O(k3)

Output: Return xextr =
∑k

i=0 c
∗
i xi ≈ x∗

Paper: Regularized Nonlinear Acceleration (NIPS 2016)

17



Performances of RNA

Algorithmic complexity. In practice, k � d . Complexity is O(d)!

Sparse input. Complexity O(k2s). Sparse output: ‖xextr‖0 ≤ ks.

Matlab/Python complexity. Only 5 lines of code!

Theorem (Scieur, d’Aspremont and Bach, 2016)

Asymptotic Acceleration Let ‖x0 − x∗‖ → 0 and λ well chosen,

‖xextr − x∗‖ ≤ O
(

(1−
√
κ)k‖x0 − x∗‖

)
(Optimal)

(Non-asymptotic bounds hold as well)

The gradient method on smooth and strongly convex functions

meets the assumptions
18



Practical Usage (from most to less important)

A. Restart Strategy

1. Generate {x0, ..., xk+1} using your Algorithm, starting at x0

2. Let xextr = RNA({x0, ..., xk+1}, λ) and restart with x0 = xextr

B. Grid search (as expensive as backtracking line-search)

Choose several λj and compute x jextr , then choose the best

⇒ Makes the algorithm parameter-free!

C. Line-search

Solve approximatively

min
h

f (x0 + h(xextr − x0))

19



Practical Usage (from most to less important)

A. Restart Strategy

1. Generate {x0, ..., xk+1} using your Algorithm, starting at x0

2. Let xextr = RNA({x0, ..., xk+1}, λ) and restart with x0 = xextr

B. Grid search (as expensive as backtracking line-search)

Choose several λj and compute x jextr , then choose the best

⇒ Makes the algorithm parameter-free!

C. Line-search

Solve approximatively

min
h

f (x0 + h(xextr − x0))

19



Practical Usage (from most to less important)

A. Restart Strategy

1. Generate {x0, ..., xk+1} using your Algorithm, starting at x0

2. Let xextr = RNA({x0, ..., xk+1}, λ) and restart with x0 = xextr

B. Grid search (as expensive as backtracking line-search)

Choose several λj and compute x jextr , then choose the best

⇒ Makes the algorithm parameter-free!

C. Line-search

Solve approximatively

min
h

f (x0 + h(xextr − x0))

19



Numerical experiment: Logistic regression

Dataset: Madelon (2000 data points, 500 features, κ = 10−6),

f (w) = τ‖w‖22 +
N∑
i=1

log(1 + exp(yiX
T
i w)).

0 2 4 6 8

10
−10

10
−5

Time (sec.)

A
c
c
u
ra

c
y

 

 

Gradient Method

Nesterov’s method + backtracking

 RNA + Gradient method

20



Numerical experiment: Logistic regression

Dataset: Madelon (2000 data points, 500 features, κ = 10−9),

f (w) = τ‖w‖22 +
N∑
i=1

log(1 + exp(yiX
T
i w)).

0 5 10 15

10
−6

10
−4

10
−2

Time (sec.)

A
c
c
u
ra

c
y

 

 

Gradient Method

Nesterov’s method + backtracking

 RNA + Gradient method

21



Numerical experiment: Dual SVM

Dataset: Madelon (2000 data points, 500 features),

f (w) =
1

2
‖XTdiag(y)w‖2 − 1Tw , 0 ≤ w ≤ 1.

0 1 2 3 4
10

−10

10
−5

10
0

10
5

Time (sec)

A
c
c
u
ra

c
y

 

 

Gradient Method

Fista

RNA + Gradient

22



Numerical experiment: Max-cut (Non-smooth optimization)

Dataset: Random graph (200 nodes, 2000 edges),

f (w) = λmax

(
Laplacian(G ) + diag(w)

)
− 1Tw

0 200 400 600

10
−2

10
−1

10
0

10
1

Time (sec)

A
c
c
u
ra

c
y

 

 

Subgradient

RNA + subgradient

Dual averaging

RNA + dual averaging

23



Conclusion

• Simple, generic acceleration algorithm

• Highly adaptive

• Negligible additional computation cost

• Significant convergence speedup over optimal methods

Work in progress...

• Acceleration of accelerated methods?

• Proximal version?

• Non-smooth acceleration?

24



Thank you!


