Regularized Nonlinear Acceleration

Damien Scieur, Alexandre d'Aspremont, Francis Bach

Acknowledgements

* X ¥ I

*
S lrezie
o 777

* * * INVENTEURS DU MONDE NUMERIQUE

Sparse Representations and Compressed
Sensing Training Network

Introduction

Algorithms produce a sequence of iterates. We usually keep the
last/best one, or their mean.

Can we do better?

Idea of Extrapolation

1. Run a simple algorithm, e.g. gradient descent

Idea of Extrapolation

1. Run a simple algorithm, e.g. gradient descent
2. “Guess” the solution using an extrapolation algorithm

Idea of Extrapolation

1. Run a simple algorithm, e.g. gradient descent
2. “Guess” the solution using an extrapolation algorithm
Enjoy! ®

Extrapolation in Real Life

Extrapolation in Real Life

An infinite number of mathematicians walk into a bar...

Extrapolation in Real Life

An infinite number of mathematicians walk into a bar...

The first one orders a beer,
the second one orders half a beer,
the third one orders a fourth of a beer, ...

Extrapolation in Real Life

An infinite number of mathematicians walk into a bar...

The first one orders a beer,
the second one orders half a beer,
the third one orders a fourth of a beer, ...

The bartender stops them, pours two beers and says “You guys
should know your limits!” - Extrapolation step!

Example in One Dimension

An autoregressive process generates scalars x;, converging to x*:

Xt4+1 = ax¢ + b = (Xt+1 — X*) = a(Xt — X*)

Example: the “beer” series {1 31l —1—% i1+ % —1—% . }

1 a =1/2
2=xp1=5(2-x) = C
X =

Like the bartender, we can estimate x* using only three iterates

Aitken’s A% Formula

Three points {x;—1, X¢, Xt+1} from autoregressive process:

(Xt41 — x7) = alxe — x7)

Aitken’s A% Formula

Three points {x;—1, X¢, Xt+1} from autoregressive process:
(Xt41 — x7) = alxe — x7)
1) Estimate «: Take the difference between two successive x;,
(xtr1 —x7) = alx —x7)
= (Xe41—xt) = a(xe — x¢—1)
(Xt — x*)

= a(x¢—1 — x*)

Simple estimation: aes; = %

Aitken’s A% Formula

Three points {x;—1, X¢, Xt+1} from autoregressive process:
(Xt41 — x7) = alxe — x7)

1) Estimate «: Take the difference between two successive x;,

(xtr1 —x7) = alx —x7)

(xt — x*) a(xt—1 — x*) = (e = xe) = ol —xe)

Simple estimation: aes; = %

2) Extrapolate x*:

X; — lest X
(Xt+1 - X*) = aest(Xt - X*) = Xextr = el el

1 — aest

Require only three iterates!

When applied to the beer series,

1 1 1
1,14+ -, 14 -+, ...
{7 —"_27 —"_2—"_47 }7

recover exactly xq:r = 2 = x™ using only three iterates!

When applied to the beer series,

1 1 1
1,14+ -, 14 -+, ...
{7 —"_27 —"_2—"_47 }7

recover exactly xq:r = 2 = x™ using only three iterates!

Performs well on other kind of sequences, e.g.

Without extrapolation: xg — x* ~ 0.03.
Using A2 formula on X7, Xg, Xg: Xexsr — x* ~ 0.00001!

Extension to R?

Scalar autoregressive process —> Vector autoregressive process
* * * *
(xt41 = x") = alxt — x*) — (xe41 — x*) = A(xe — x¥)

We assume A symmetric.

Extension to R?

Scalar autoregressive process —> Vector autoregressive process
* * * *
(xt41 = x") = alxt — x*) — (xe41 — x*) = A(xe — x¥)

We assume A symmetric.

Example: Gradient method with step size h,
(Xt_t,_l*X*) = (Xt*X*) — th(Xt)

Linearizing Vf(x) around x* gives

(Xe41 —x*) = (I - hV2f(x*))(xt — x*) |+ Perturbations
—_——
=A

Extension of A2 formula in R9? Anderson acceleration
Performances? Optimal on quadratics

Impact of perturbations? Huge — Regularization (our work)

> O N =

Rate of convergence? Asymptotically optimal

Acceleration and Weighted Average

Vector autoregressive process with ||All = (1 — k) < 1,
(Xe41 — x*) = A(xe — x*) = AT (xg — x¥)
Error at iteration k:
e = x*|| < (1= k) |lxo = x| (Slow)

We literally waste information contained in xg, ..., Xx_1!

10

Acceleration and Weighted Average

Vector autoregressive process with ||All = (1 — k) < 1,
(Xe41 — x*) = A(xe — x*) = AT (xg — x¥)
Error at iteration k:
I — x| < (1 = w)¥|Ixo = x*|| (Slow)
We literally waste information contained in xg, ..., Xx_1!
Proposition

There exists vector ¢ € R¥ s.t. Zf'(:o ¢i=1and

k
1Y " cixi — x| < (1= VE)¥|xo — x*|| (Optimal)
i=0

Proof: There exist accelerated methods (e.g. Nesterov) Lo

Goal of extrapolation

Find the best coefficients ¢ such that
k
1) cixi = x| = [|Xextr — x*||
i=0

is as small as possible.

11

Approximation of Extrapolation Error

Goal: Approximate (then minimize) the extrapolation error

k
Xextr — X* = E cix; — x* (unknown)
i=0

12

Approximation of Extrapolation Error

Goal: Approximate (then minimize) the extrapolation error
k
Xextr — X* = Z cix; — x* (unknown)
i=0

Definition: Residual at iteration i, r; £ Xji+1 — %; (known)

12

Approximation of Extrapolation Error

Goal: Approximate (then minimize) the extrapolation error
k
Xextr_X>k :ZC,'X,'—X* ()
i=0

Definition: Residual at iteration i/, r; = x;41 — X; ()
Proposition
The combination of residuals approximates the extrapolation error

k
> ciri = (A= 1)(Xextr — X*)
i=0

Proof: xii1—x = (xip1—x%)—(xi—x%)
= A(xi—x*) = (xi — x*) = (A= 1)(xi — x*)

12

Acceleration Algorithm (Anderson’s Acceleration)

1. Compute the residuals r; = xj+1 — x;, = 1...k

13

Acceleration Algorithm (Anderson’s Acceleration)

1. Compute the residuals r; = xj+1 — x;, = 1...k

2. Under the constraint Y ¢; = 1, solve

k
mi”HZCiriH ~ min |[Xextr — x|
N i=0 ‘

13

Acceleration Algorithm (Anderson’s Acceleration)

1. Compute the residuals r; = xj+1 — x;, = 1...k

2. Under the constraint Y ¢; = 1, solve
k
min || Z cirill ~ min|{xexr — X7
@ @
i=0
2'. Let R =[ry, r,..., rx]. The closed-form formula is

o (RTR)™ 11
17(RTR)-11

13

Acceleration Algorithm (Anderson’s Acceleration)

. Compute the residuals r; = xj+1 — xj, =1...k

Under the constraint > ¢; = 1, solve

k
mi”HZCiriH ~ min |[Xextr — x|
N i=0 ‘

. Let R =[ro, r1, ..., rx]. The closed-form formula is

- (RTR)™ 11
17(RTR)-11

Return

_ vk x ~ ek
Xextr = Z,':o GXp =X

13

Performances

Convergence rate for minimizing quadratics:

| Xextr — x*|| < (1 = v&)¥||xo — x*|| (Optimal)

14

Performances

Convergence rate for minimizing quadratics:

Iextr = x*[| < (1 = V&) o = x*|| (Optimal)
10° f —Gr:':\dient metHod
—— Acceleration + Gradient
10%
3
< 10'
100 \
0 160 200 300 400 500
Iteration

Does not work for minimizing nonlinear functions...
14

Gradient method with step size h,
(Xt_t'_]_—X*) = (Xt—X*) — th(Xt)

Linearizing Vf(x) around x* gives

’ (xt+1 — x*) = A(xe — x¥) ‘ + Perturbations

Anderson’s Acceleration is unstable! - why?

ii5)

Impact of perturbations?

The computation of c* involves (RTR)™!
Proposition

If RTR is perturbed by a matrix P (e.g. Taylor remainder), then

Error on c* < |[((RTR)7}|[IPl]Ic* |l

16

Impact of perturbations?

The computation of c* involves (RTR)™!
Proposition

If RTR is perturbed by a matrix P (e.g. Taylor remainder), then

Error on c* < |[((RTR)7}|[IPl]Ic* |l

Krylov matrix. |[(RT R)~!| grows exponentially with k.

The error on ¢* is virtually unbounded.

16

Regularized Nonlinear Acceleration (RNA)

Perturbations are controlled by Tikhonov Regularization

Input: Sequence {xp, ..., Xk+1}, parameter A > 0

1. Form R =[ry, ..., rk], where ri = xj11 — x; O(dk)
2. Compute R™R O(dk?)
3: Compute c* = (RTRHAD 71 O(k3)

17 (RTR+A)-11

Output: Return Xeysr = Zf‘(:o cixi ~ x*

Paper: Regularized Nonlinear Acceleration (NIPS 2016)

17

Performances of RNA

Algorithmic complexity. In practice, k < d.
Sparse input. Complexity O(k?s). || Xextr|lo < ks.

Matlab/Python complexity. Only

Theorem (Scieur, d’Aspremont and Bach, 2016)

Let ||xo — x*|| — 0 and X well chosen,
Iextr = x| < O ((1 = V) l1x0 = x°1])
(Non-asymptotic bounds hold as well)

The gradient method on smooth and strongly convex functions

meets the assumptions
18

Practical Usage (from most to less important)

A. Restart Strategy

1. Generate {x, ..., Xk+1} using your Algorithm, starting at xo

2. Let Xextr = RNA({x0, ..., Xk+1}, A) and restart with xop = Xextr

19

Practical Usage (from most to less important)

A. Restart Strategy

1. Generate {x, ..., Xk+1} using your Algorithm, starting at xo

2. Let Xextr = RNA({x0, ..., Xk+1}, A) and restart with xop = Xextr

B. Grid search (as expensive as backtracking line-search)

then choose the best

Choose several \; and compute x,,

= Makes the algorithm parameter-free!

19

Practical Usage (from most to less important)

A. Restart Strategy

1. Generate {x, ..., Xk+1} using your Algorithm, starting at xo

2. Let Xextr = RNA({x0, ..., Xk+1}, A) and restart with xop = Xextr

B. Grid search (as expensive as backtracking line-search)
Choose several \; and compute x.,, then choose the best

= Makes the algorithm parameter-free!

C. Line-search
Solve approximatively

mhin f (x0 + h(Xextr — X0))

19

Numerical experiment: Logistic regression

Dataset: Madelon (2000 data points, 500 features, k = 10_6),

N
F(w) = Tllwll3 +) log(1 + exp(yiX;" w)).
i=1

-
o
&

Accuracy

== Gradient Method

Nesterov’s method + backtracking

RNA + Gradient method
0 2 4 6 8
Time (sec.)

20

Numerical experiment: Logistic regression

Dataset: Madelon (2000 data points, 500 features, x = 10 ?),

N
F(w) = Tllwll3 +) log(1 + exp(yiX;" w)).

i=1
N
% it

1072}
>
3 == Gradient Method
§ Nesterov’s method + backtracking
g 107 RNA + Gradient method |

107t

0 5 10 15

Time (sec.)
21

Numerical experiment: Dual SVM

Dataset: Madelon (2000 data points, 500 features),

1.

[/\

1
f(w) = SIIX " diag(y)w[* = 17w, 0<w

10 ‘
=¥ Gradient Method

10° | Fista]
ko RNA + Gradient
©
5
3
<

107}

-10
10 . . :
0 1 2 3 4
Time (sec)

22

Numerical experiment: Max-cut (Non-smooth optimization)

Dataset: Random graph (200 nodes, 2000 edges),
f(w) = Ao (Laplacian(G) + diag(w)> 17w

10} ‘ ‘

10° | == Subgradient
o =0—RNA + subgradient
§ Dual averaging
§ 107" RNA + dual averaging| 1
<<

1072

0 200 400 600

Time (sec)

23

Conclusion

Simple, generic acceleration algorithm

Highly adaptive

Negligible additional computation cost

Significant convergence speedup over optimal methods

Work in progress...

e Acceleration of accelerated methods?
e Proximal version?

e Non-smooth acceleration?

24

Thank youl!

